Special Positions in a Binary Matrix
Description
Given a rows x cols
matrix mat
, where mat[i][j]
is either 0
or 1
, return the number of special positions in mat
.
A position (i,j)
is called special if mat[i][j] == 1
and all other elements in row i
and column j
are 0
(rows and columns are 0-indexed).
Example 1:
Input: mat = [[1,0,0], [0,0,1], [1,0,0]] Output: 1 Explanation: (1,2) is a special position because mat[1][2] == 1 and all other elements in row 1 and column 2 are 0.
Example 2:
Input: mat = [[1,0,0], [0,1,0], [0,0,1]] Output: 3 Explanation: (0,0), (1,1) and (2,2) are special positions.
Example 3:
Input: mat = [[0,0,0,1], [1,0,0,0], [0,1,1,0], [0,0,0,0]] Output: 2
Example 4:
Input: mat = [[0,0,0,0,0], [1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,1]] Output: 3
Constraints:
rows == mat.length
cols == mat[i].length
1 <= rows, cols <= 100
mat[i][j]
is0
or1
.
Solution(javascript)
/**
* @param {number[][]} mat
* @return {number}
*/
const numSpecial = function (mat) {
const count = (nums = []) => nums.reduce((acc, num) => (acc + (num === 1 ? 1 : 0)), 0)
const columns = mat.reduce((acc, items) => {
if (count(items) === 1) {
const columnIndex = items.findIndex(x => x === 1)
acc.add(columnIndex)
}
return acc
}, new Set())
let result = 0
for (const column of columns.values()) {
let ones = 0
for (let row = 0; row < mat.length; row++) {
if (mat[row][column] === 1) {
ones += 1
}
}
if (ones === 1) {
result += 1
}
}
return result
}