Special Positions in a Binary Matrix
Description
Given a rows x cols matrix mat, where mat[i][j] is either 0 or 1, return the number of special positions in mat.
A position (i,j) is called special if mat[i][j] == 1 and all other elements in row i and column j are 0 (rows and columns are 0-indexed).
Example 1:
Input: mat = [[1,0,0], [0,0,1], [1,0,0]] Output: 1 Explanation: (1,2) is a special position because mat[1][2] == 1 and all other elements in row 1 and column 2 are 0.
Example 2:
Input: mat = [[1,0,0], [0,1,0], [0,0,1]] Output: 3 Explanation: (0,0), (1,1) and (2,2) are special positions.
Example 3:
Input: mat = [[0,0,0,1], [1,0,0,0], [0,1,1,0], [0,0,0,0]] Output: 2
Example 4:
Input: mat = [[0,0,0,0,0], [1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,1]] Output: 3
Constraints:
- rows == mat.length
- cols == mat[i].length
- 1 <= rows, cols <= 100
- mat[i][j]is- 0or- 1.
Solution(javascript)
/**
 * @param {number[][]} mat
 * @return {number}
 */
const numSpecial = function (mat) {
  const count = (nums = []) => nums.reduce((acc, num) => (acc + (num === 1 ? 1 : 0)), 0)
  const columns = mat.reduce((acc, items) => {
    if (count(items) === 1) {
      const columnIndex = items.findIndex(x => x === 1)
      acc.add(columnIndex)
    }
    return acc
  }, new Set())
  let result = 0
  for (const column of columns.values()) {
    let ones = 0
    for (let row = 0; row < mat.length; row++) {
      if (mat[row][column] === 1) {
        ones += 1
      }
    }
    if (ones === 1) {
      result += 1
    }
  }
  return result
}