Counting Bits
Description
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example 1:
Input: 2 Output: [0,1,1]
Example 2:
Input: 5
Output: [0,1,1,2,1,2]
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
Solution(javascript)
/*
* @lc app=leetcode id=338 lang=javascript
*
* [338] Counting Bits
*/
// @lc code=start
// /** 1: 逐个计算
// * @param {number} num
// * @return {number[]}
// */
// const countBits = function (num) {
// const count = (n) => {
// let result = 0
// while (n) {
// n &= (n - 1)
// result += 1
// }
// return result
// }
// const arr = []
// for (let i = 0; i <= num; i++) {
// arr[i] = count(i)
// }
// return arr
// }
// /** 2.1: DP
// * @param {number} num
// * @return {number[]}
// */
// const countBits = function (num) {
// const dp = [0]
// for (let i = 1; i <= num; i++) {
// dp[i] = dp[i & (i - 1)] + 1
// }
// return dp
// }
/** 2.2: DP
* @param {number} num
* @return {number[]}
*/
const countBits = function (num) {
const dp = [0]
for (let i = 1; i <= num; i++) {
if ((i & 1) === 0) {
dp[i] = dp[i >> 1]
} else {
dp[i] = dp[i - 1] + 1
}
}
return dp
}
// @lc code=end