Peak Index in a Mountain Array
Description
Let's call an array arr
a mountain if the following properties hold:
arr.length >= 3
- There exists some
i
with0 < i < arr.length - 1
such that:arr[0] < arr[1] < ... arr[i-1] < arr[i]
arr[i] > arr[i+1] > ... > arr[arr.length - 1]
Given an integer array arr that is guaranteed to be a mountain, return any i
such that arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1]
.
Example 1:
Input: arr = [0,1,0] Output: 1
Example 2:
Input: arr = [0,2,1,0] Output: 1
Example 3:
Input: arr = [0,10,5,2] Output: 1
Example 4:
Input: arr = [3,4,5,1] Output: 2
Example 5:
Input: arr = [24,69,100,99,79,78,67,36,26,19] Output: 2
Constraints:
3 <= arr.length <= 104
0 <= arr[i] <= 106
arr
is guaranteed to be a mountain array.
Solution(javascript)
/**
* @param {number[]} A
* @return {number}
*/
const peakIndexInMountainArray = (xs = []) => {
if (xs.length < 3) {
return -1
}
const aux = (low, high) => {
if (low > high) {
return -1
}
const middle = Math.floor((low + high) / 2)
if (xs[middle] <= xs[middle + 1]) {
return aux(middle + 1, high)
} if (xs[middle] <= xs[middle - 1]) {
return aux(low, middle - 1)
}
return middle
}
return aux(0, xs.length - 1)
}