Count Triplets That Can Form Two Arrays of Equal XOR
Description
Given an array of integers arr
.
We want to select three indices i
, j
and k
where (0 <= i < j <= k < arr.length)
.
Let's define a
and b
as follows:
a = arr[i] ^ arr[i + 1] ^ ... ^ arr[j - 1]
b = arr[j] ^ arr[j + 1] ^ ... ^ arr[k]
Note that ^ denotes the bitwise-xor operation.
Return the number of triplets (i
, j
and k
) Where a == b
.
Example 1:
Input: arr = [2,3,1,6,7] Output: 4 Explanation: The triplets are (0,1,2), (0,2,2), (2,3,4) and (2,4,4)
Example 2:
Input: arr = [1,1,1,1,1] Output: 10
Example 3:
Input: arr = [2,3] Output: 0
Example 4:
Input: arr = [1,3,5,7,9] Output: 3
Example 5:
Input: arr = [7,11,12,9,5,2,7,17,22] Output: 8
Constraints:
1 <= arr.length <= 300
1 <= arr[i] <= 10^8
Solution(javascript)
/**
* @param {number[]} arr
* @return {number}
*/
const countTriplets = function (arr) {
let count = 0
for (let i = 0; i < arr.length; i++) {
let a = arr[i]
for (let j = i + 1; j < arr.length; j++) {
if (i <= j - 1) {
a ^= arr[j]
}
let b = arr[j]
for (let k = j; k < arr.length; k++) {
b ^= arr[k]
if (a === b) {
count += 1
}
}
}
}
return count
}