Max Dot Product of Two Subsequences
Description
Given two arrays nums1
and nums2
.
Return the maximum dot product between non-empty subsequences of nums1 and nums2 with the same length.
A subsequence of a array is a new array which is formed from the original array by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, [2,3,5]
is a subsequence of [1,2,3,4,5]
while [1,5,3]
is not).
Example 1:
Input: nums1 = [2,1,-2,5], nums2 = [3,0,-6] Output: 18 Explanation: Take subsequence [2,-2] from nums1 and subsequence [3,-6] from nums2. Their dot product is (2*3 + (-2)*(-6)) = 18.
Example 2:
Input: nums1 = [3,-2], nums2 = [2,-6,7] Output: 21 Explanation: Take subsequence [3] from nums1 and subsequence [7] from nums2. Their dot product is (3*7) = 21.
Example 3:
Input: nums1 = [-1,-1], nums2 = [1,1] Output: -1 Explanation: Take subsequence [-1] from nums1 and subsequence [1] from nums2. Their dot product is -1.
Constraints:
1 <= nums1.length, nums2.length <= 500
-1000 <= nums1[i], nums2[i] <= 1000
Solution(javascript)
/**
* @param {number[]} nums1
* @param {number[]} nums2
* @return {number}
*/
const maxDotProduct = function (nums1, nums2) {
let max = -Infinity
const memo = {}
const aux = (index1, index2) => {
const key = `${index1}-${index2}`
if (memo[key] !== undefined) {
return memo[key]
}
if (index1 >= nums1.length || index2 >= nums2.length) {
return 0
}
memo[key] = Math.max(
nums1[index1] * nums2[index2] + aux(index1 + 1, index2 + 1),
aux(index1, index2 + 1),
aux(index1 + 1, index2),
)
return memo[key]
}
for (let i = 0; i < nums1.length; i++) {
for (let j = 0; j < nums2.length; j++) {
max = Math.max(
max,
nums1[i] * nums2[j] + aux(i + 1, j + 1),
)
}
}
return max
}