Maximum Number of Coins You Can Get
Description
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
- In each step, you will choose any 3 piles of coins (not necessarily consecutive).
- Of your choice, Alice will pick the pile with the maximum number of coins.
- You will pick the next pile with maximum number of coins.
- Your friend Bob will pick the last pile.
- Repeat until there are no more piles of coins.
Given an array of integers piles
where piles[i]
is the number of coins in the ith
pile.
Return the maximum number of coins which you can have.
Example 1:
Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5] Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18
Constraints:
3 <= piles.length <= 10^5
piles.length % 3 == 0
1 <= piles[i] <= 10^4
Solution(javascript)
/**
* @param {number[]} piles
* @return {number}
*/
const maxCoins = function (piles) {
piles.sort((a, b) => a - b)
const n = piles.length / 3
let max = 0
for (let i = 1; i <= n; i++) {
piles.pop()
max += piles.pop()
}
return max
}