Median of Two Sorted Arrays
Description
Given two sorted arrays nums1
and nums2
of size m
and n
respectively, return the median of the two sorted arrays.
Follow up: The overall run time complexity should be O(log (m+n))
.
Example 1:
Input: nums1 = [1,3], nums2 = [2] Output: 2.00000 Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4] Output: 2.50000 Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Example 3:
Input: nums1 = [0,0], nums2 = [0,0] Output: 0.00000
Example 4:
Input: nums1 = [], nums2 = [1] Output: 1.00000
Example 5:
Input: nums1 = [2], nums2 = [] Output: 2.00000
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
Solution(javascript)
/**
* @param {number[]} nums1
* @param {number[]} nums2
* @return {number}
*/
const findMedianSortedArrays = (nums1, nums2) => {
const merge = (xs1, xs2) => {
if (!xs1 || !xs1.length) {
return xs2
}
if (!xs2 || !xs2.length) {
return xs1
}
const [hd1, ...rest1] = xs1
const [hd2, ...rest2] = xs2
return hd1 <= hd2 ? [hd1, ...merge(rest1, xs2)] : [hd2, ...merge(xs1, rest2)]
}
const nums = merge(nums1, nums2)
const middle = Math.floor((nums.length-1) / 2)
return (middle * 2 === (nums.length-1)) ? nums[middle] : ((nums[middle] + nums[middle + 1]) / 2)
}