Number of Sub-arrays of Size K and Average Greater than or Equal to Threshold
Description
Given an array of integers arr
and two integers k
and threshold
.
Return the number of sub-arrays of size k
and average greater than or equal to threshold
.
Example 1:
Input: arr = [2,2,2,2,5,5,5,8], k = 3, threshold = 4 Output: 3 Explanation: Sub-arrays [2,5,5],[5,5,5] and [5,5,8] have averages 4, 5 and 6 respectively. All other sub-arrays of size 3 have averages less than 4 (the threshold).
Example 2:
Input: arr = [1,1,1,1,1], k = 1, threshold = 0 Output: 5
Example 3:
Input: arr = [11,13,17,23,29,31,7,5,2,3], k = 3, threshold = 5 Output: 6 Explanation: The first 6 sub-arrays of size 3 have averages greater than 5. Note that averages are not integers.
Example 4:
Input: arr = [7,7,7,7,7,7,7], k = 7, threshold = 7 Output: 1
Example 5:
Input: arr = [4,4,4,4], k = 4, threshold = 1 Output: 1
Constraints:
1 <= arr.length <= 10^5
1 <= arr[i] <= 10^4
1 <= k <= arr.length
0 <= threshold <= 10^4
Solution(javascript)
/** Sliding Window
* @param {number[]} arr
* @param {number} k
* @param {number} threshold
* @return {number}
*/
const numOfSubarrays = function (arr, k, threshold) {
let sum = arr.slice(0, k).reduce((acc, a) => acc + a)
let count = (sum / k) >= threshold ? 1 : 0
for (let i = 1; i <= arr.length - k; i++) {
sum = sum + arr[i + k - 1] - arr[i - 1]
if ((sum / k) >= threshold) {
count += 1
}
}
return count
}