4Sum II
Description
Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l)
there are such that A[i] + B[j] + C[k] + D[l]
is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
Example:
Input: A = [ 1, 2] B = [-2,-1] C = [-1, 2] D = [ 0, 2]Output: 2
Explanation: The two tuples are:
- (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
- (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
Solution(javascript)
/**
* @param {number[]} A
* @param {number[]} B
* @param {number[]} C
* @param {number[]} D
* @return {number}
*/
var fourSumCount = function(A, B, C, D) {
const map1 = {}
for(let i = 0; i < A.length; i++) {
for(let j = 0; j < B.length; j++) {
const sum = A[i] + B[j]
map1[sum] = (map1[sum] || 0) + 1
}
}
let count = 0
for(let i = 0; i < C.length; i++) {
for(let j = 0; j < D.length; j++) {
const sum = C[i] + D[j]
if(map1[-sum]) {
count += map1[-sum]
}
}
}
return count
};