Design Circular Queue
Description
Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Your implementation should support following operations:
MyCircularQueue(k)
: Constructor, set the size of the queue to be k.Front
: Get the front item from the queue. If the queue is empty, return -1.Rear
: Get the last item from the queue. If the queue is empty, return -1.enQueue(value)
: Insert an element into the circular queue. Return true if the operation is successful.deQueue()
: Delete an element from the circular queue. Return true if the operation is successful.isEmpty()
: Checks whether the circular queue is empty or not.isFull()
: Checks whether the circular queue is full or not.
Example:
MyCircularQueue circularQueue = new MyCircularQueue(3); // set the size to be 3 circularQueue.enQueue(1); // return true circularQueue.enQueue(2); // return true circularQueue.enQueue(3); // return true circularQueue.enQueue(4); // return false, the queue is full circularQueue.Rear(); // return 3 circularQueue.isFull(); // return true circularQueue.deQueue(); // return true circularQueue.enQueue(4); // return true circularQueue.Rear(); // return 4
Note:
- All values will be in the range of [0, 1000].
- The number of operations will be in the range of [1, 1000].
- Please do not use the built-in Queue library.
Solution(javascript)
/**
* Initialize your data structure here. Set the size of the queue to be k.
* @param {number} k
*/
const MyCircularQueue = function (k) {
this.size = k
this.queue = []
this.start1 = 0
this.end1 = 0
this.start2 = 0
this.end2 = 0
}
/**
* Insert an element into the circular queue. Return true if the operation is successful.
* @param {number} value
* @return {boolean}
*/
MyCircularQueue.prototype.enQueue = function (value) {
if (this.isFull()) {
return false
}
if (this.end2 <= this.size - 1) {
this.queue[this.end2++] = value
} else {
this.queue[this.end1++] = value
}
return true
}
/**
* Delete an element from the circular queue. Return true if the operation is successful.
* @return {boolean}
*/
MyCircularQueue.prototype.deQueue = function () {
if (this.isEmpty()) {
return false
}
if (this.queue[this.start2] !== undefined) {
this.queue[this.start2++] = undefined
} else {
this.queue[this.start1++] = undefined
}
return true
}
/**
* Get the front item from the queue.
* @return {number}
*/
MyCircularQueue.prototype.Front = function () {
if (this.isEmpty()) {
return -1
}
return this.queue[this.start2] === undefined ? this.queue[this.start1] : this.queue[this.start2]
}
/**
* Get the last item from the queue.
* @return {number}
*/
MyCircularQueue.prototype.Rear = function () {
if (this.isEmpty()) {
return -1
}
return this.queue[this.end1 - 1] === undefined ? this.queue[this.end2 - 1] : this.queue[this.end1 - 1]
}
/**
* Checks whether the circular queue is empty or not.
* @return {boolean}
*/
MyCircularQueue.prototype.isEmpty = function () {
if (this.end2 - this.start2 + this.end1 - this.start1 <= 0) {
return true
}
return false
}
/**
* Checks whether the circular queue is full or not.
* @return {boolean}
*/
MyCircularQueue.prototype.isFull = function () {
if (this.end2 - this.start2 + this.end1 - this.start1 >= this.size) {
return true
}
return false
}