Array Nesting
Description
A zero-indexed array A of length N contains all integers from 0 to N-1. Find and return the longest length of set S, where S[i] = {A[i], A[A[i]], A[A[A[i]]], ... } subjected to the rule below.
Suppose the first element in S starts with the selection of element A[i] of index = i, the next element in S should be A[A[i]], and then A[A[A[i]]]… By that analogy, we stop adding right before a duplicate element occurs in S.
Example 1:
Input: A = [5,4,0,3,1,6,2] Output: 4 Explanation: A[0] = 5, A[1] = 4, A[2] = 0, A[3] = 3, A[4] = 1, A[5] = 6, A[6] = 2.One of the longest S[K]: S[0] = {A[0], A[5], A[6], A[2]} = {5, 6, 2, 0}
Note:
- N is an integer within the range [1, 20,000].
- The elements of A are all distinct.
- Each element of A is an integer within the range [0, N-1].
Solution(javascript)
// 这题暴力求解的话是 O(n^2), 需要用 DP 缓存重复计算的值
// const arrayNesting = function (nums = []) {
// const map = {}
// const aux = (index, visited = {}) => {
// if (map[index] !== undefined) {
// return map[index]
// }
// if (visited[index]) {
// return 0
// }
// visited[index] = true
// map[index] = aux(nums[index], visited) + 1
// return map[index]
// }
// let max = 0
// nums.forEach((n, index) => {
// map[index] = aux(index)
// max = Math.max(max, map[index])
// })
// return max
// }
const arrayNesting = function (nums = []) {
const visited = {}
const aux = (index) => {
if (visited[index]) {
return 0
}
visited[index] = true
return aux(nums[index], visited) + 1
}
let max = 0
nums.forEach((n, index) => {
if (!visited[index]) {
max = Math.max(max, aux(index))
}
})
return max
}