Length of Longest Fibonacci Subsequence
Description
A sequence X_1, X_2, ..., X_n
is fibonacci-like if:
n >= 3
X_i + X_{i+1} = X_{i+2}
for alli + 2 <= n
Given a strictly increasing array A
of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A
. If one does not exist, return 0.
(Recall that a subsequence is derived from another sequence A
by deleting any number of elements (including none) from A
, without changing the order of the remaining elements. For example, [3, 5, 8]
is a subsequence of [3, 4, 5, 6, 7, 8]
.)
Example 1:
Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8].
Example 2:
Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].
Note:
3 <= A.length <= 1000
1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
- (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
Solution(javascript)
/*
* @lc app=leetcode id=873 lang=javascript
*
* [873] Length of Longest Fibonacci Subsequence
*/
// @lc code=start
// /** 注意是严格递增的
// * DP + binary search O(n^2 * log(n))
// * @param {number[]} A
// * @return {number}
// */
// const lenLongestFibSubseq = function (A) {
// const search = (start, target) => {
// let left = start
// let right = A.length - 1
// while (left <= right) {
// const middle = Math.floor(left + (right - left) / 2)
// if (A[middle] === target) {
// return middle
// } if (A[middle] < target) {
// left = middle + 1
// } else {
// right = middle - 1
// }
// }
// return -1
// }
// const memo = []
// const aux = (a, b) => {
// memo[a] = memo[a] || []
// if (memo[a][b] !== undefined) {
// return memo[a][b]
// }
// if (b >= A.length - 1) {
// return 0
// }
// const c = search(b + 1, A[a] + A[b])
// if (c === -1) {
// return 0
// }
// memo[a][b] = aux(b, c) + 1
// return memo[a][b]
// }
// let max = 0
// for (let i = 0; i < A.length; i++) {
// for (let j = i + 1; j < A.length; j++) {
// max = Math.max(max, aux(i, j))
// }
// }
// return max > 0 ? max + 2 : 0
// }
// /** 注意是严格递增的
// * Top-down: DP + Map O(n^2)
// * @param {number[]} A
// * @return {number}
// */
// const lenLongestFibSubseq = function (A) {
// const map = A.reduce((acc, num, index) => {
// acc[num] = index
// return acc
// }, {})
// const memo = []
// const aux = (a, b) => {
// memo[a] = memo[a] || []
// if (memo[a][b] !== undefined) {
// return memo[a][b]
// }
// if (b >= A.length - 1) {
// return 0
// }
// const c = map[A[a] + A[b]]
// if (c === undefined) {
// return 0
// }
// memo[a][b] = aux(b, c) + 1
// return memo[a][b]
// }
// let max = 0
// for (let i = 0; i < A.length; i++) {
// for (let j = i + 1; j < A.length; j++) {
// max = Math.max(max, aux(i, j))
// }
// }
// return max > 0 ? max + 2 : 0
// }
/*
* @lc app=leetcode id=873 lang=javascript
*
* [873] Length of Longest Fibonacci Subsequence
*/
// @lc code=start
// /** 注意是严格递增的
// * DP + binary search O(n^2 * log(n))
// * @param {number[]} A
// * @return {number}
// */
// const lenLongestFibSubseq = function (A) {
// const search = (start, target) => {
// let left = start
// let right = A.length - 1
// while (left <= right) {
// const middle = Math.floor(left + (right - left) / 2)
// if (A[middle] === target) {
// return middle
// } if (A[middle] < target) {
// left = middle + 1
// } else {
// right = middle - 1
// }
// }
// return -1
// }
// const memo = []
// const aux = (a, b) => {
// memo[a] = memo[a] || []
// if (memo[a][b] !== undefined) {
// return memo[a][b]
// }
// if (b >= A.length - 1) {
// return 0
// }
// const c = search(b + 1, A[a] + A[b])
// if (c === -1) {
// return 0
// }
// memo[a][b] = aux(b, c) + 1
// return memo[a][b]
// }
// let max = 0
// for (let i = 0; i < A.length; i++) {
// for (let j = i + 1; j < A.length; j++) {
// max = Math.max(max, aux(i, j))
// }
// }
// return max > 0 ? max + 2 : 0
// }
/** 注意是严格递增的
* Bottom-up O(n^2)
* @param {number[]} A
* @return {number}
*/
const lenLongestFibSubseq = function (A) {
const map = A.reduce((acc, num, index) => {
acc[num] = index
return acc
}, {})
const memo = A.map(() => A.map(() => 0))
let max = 0
for (let i = 0; i < A.length; i++) {
for (let j = i + 1; j < A.length; j++) {
const a = A[i]
const b = A[j]
const index = map[b - a]
if (index < i) {
memo[i][j] = memo[index][i] + 1
}
max = Math.max(max, memo[i][j])
}
}
return max > 0 ? max + 2 : 0
}
// @lc code=end