Network Delay Time
Description
There are N
network nodes, labelled 1
to N
.
Given times
, a list of travel times as directed edges times[i] = (u, v, w)
, where u
is the source node, v
is the target node, and w
is the time it takes for a signal to travel from source to target.
Now, we send a signal from a certain node K
. How long will it take for all nodes to receive the signal? If it is impossible, return -1
.
Example 1:
Input: times = [[2,1,1],[2,3,1],[3,4,1]], N = 4, K = 2 Output: 2
Note:
N
will be in the range[1, 100]
.K
will be in the range[1, N]
.- The length of
times
will be in the range[1, 6000]
. - All edges
times[i] = (u, v, w)
will have1 <= u, v <= N
and0 <= w <= 100
.
Solution(javascript)
/** Dijkstra
* @param {number[][]} times
* @param {number} N
* @param {number} K
* @return {number}
*/
const networkDelayTime = function (times, N, K) {
const distance = new Array(N).fill(Infinity)
.reduce((acc, v, index) => {
acc[index + 1] = Infinity
return acc
}, {})
distance[K] = 0
const adj = times.reduce((acc, [u, v, w]) => {
acc[u] = acc[u] || []
acc[u].push([v, w])
return acc
}, {})
let count = N
let max = 0
while (count > 0) {
const [minNode, minWeight] = Object.keys(distance).reduce((acc, node) => {
const w = distance[node]
if (w < acc[1]) {
return [node, w]
}
return acc
}, [0, Infinity])
if (minWeight === Infinity) {
return -1
}
max = Math.max(max, distance[minNode]);
(adj[minNode] || []).forEach(([nextNode, nextWeight]) => {
distance[nextNode] = Math.min(distance[nextNode], distance[minNode] + nextWeight)
})
delete distance[minNode] // 删掉已经处理过的节点
count -= 1
}
return max
}